Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain.
نویسندگان
چکیده
We have used transient kinetics, nanosecond time-resolved fluorescence resonance energy transfer (FRET), and kinetics simulations to resolve a structural transition in the Dictyostelium myosin II relay helix during the actin-activated power stroke. The relay helix plays a critical role in force generation in myosin, coupling biochemical changes in the ATPase site with the force-transducing rotation of the myosin light-chain domain. Previous research in the absence of actin showed that ATP binding to myosin induces a dynamic equilibrium between a bent prepower stroke state of the relay helix and a straight postpower stroke state, which dominates in the absence of ATP or when ADP is bound. We now ask whether actin binding reverses this transition and if so, how this reversal is coordinated with actin-activated phosphate release. We labeled a Cys-lite Dictyostelium myosin II motor domain with donor and acceptor probes at two engineered Cys residues designed to detect relay helix bending. We then performed transient time-resolved FRET following stopped-flow mixing of actin with labeled myosin, preincubated with ATP. We determined the kinetics of actin-activated phosphate release, using fluorescent phosphate-binding protein. The results show that actin binding to the myosin.ADP.P complex straightens the relay helix before phosphate dissociation. This actin-activated relay helix straightening is reversible, but phosphate irreversibly dissociates from the postpower stroke state, preventing reversal of the power stroke. Thus, relay helix straightening gates phosphate dissociation, whereas phosphate dissociation provides the thermodynamic driving force underlying force production.
منابع مشابه
Direct real-time detection of the structural and biochemical events in the myosin power stroke.
A principal goal of molecular biophysics is to show how protein structural transitions explain physiology. We have developed a strategic tool, transient time-resolved FRET [(TR)(2)FRET], for this purpose and use it here to measure directly, with millisecond resolution, the structural and biochemical kinetics of muscle myosin and to determine directly how myosin's power stroke is coupled to the ...
متن کاملElectron microscopic recording of myosin head power stroke in hydrated myosin filaments
Muscle contraction results from cyclic attachment and detachment between myosin heads and actin filaments, coupled with ATP hydrolysis. Despite extensive studies, however, the amplitude of myosin head power stroke still remains to be a mystery. Using the gas environmental chamber, we have succeeded in recording the power stroke of position-marked myosin heads in hydrated mixture of actin and my...
متن کاملAmplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain.
We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40-45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficienc...
متن کاملDirect Observation of the Myosin Va Recovery Stroke That Contributes to Unidirectional Stepping along Actin
Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery ...
متن کاملMyosin conformational states determined by single fluorophore polarization.
Muscle contraction is powered by the interaction of the molecular motor myosin with actin. With new techniques for single molecule manipulation and fluorescence detection, it is now possible to correlate, within the same molecule and in real time, conformational states and mechanical function of myosin. A spot-confocal microscope, capable of detecting single fluorophore polarization, was develo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 18 شماره
صفحات -
تاریخ انتشار 2013